Article ID Journal Published Year Pages File Type
386064 Expert Systems with Applications 2010 8 Pages PDF
Abstract

This study implements a novel expert system for financial forecasting. In the first stage, wavelet analysis transforms the input space of raw data to a time-scale feature space suitable for financial forecasting, and then a Recurrent Self-Organizing Map (RSOM) algorithm is used for partitioning and storing temporal context of the feature space. In the second stage, multiple kernel partial least square regressors (as local models) that best fit partitioned regions are constructed for final forecasting. Compared with neural networks, pure SVMs or traditional GARCH models, the proposed model performs best. The root-mean-squared forecasting errors are significantly reduced.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,