Article ID Journal Published Year Pages File Type
386083 Expert Systems with Applications 2010 9 Pages PDF
Abstract

In this paper, we propose RankIP, the first immune programming (IP) based ranking function discovery approach. IP is a novel evolution based machine learning algorithm with the principles of immune systems, which is verified to be superior to Genetic Programming (GP) on the convergence of algorithm according to their experimental results in Musilek et al. (2006).However, such superiority of IP is mainly demonstrated for optimization problems. RankIP adapts IP to the learning to rank problem, a typical classification problem. In doing this, the solution representation, affinity function, and high-affinity antibody selection require completely different treatments. Besides, two formulae focusing on selecting best antibody for test are designed for learning to rank.Experimental results demonstrate that the proposed RankIP outperforms the state-of-the-art learning-based ranking methods significantly in terms of P@n,MAPP@n,MAP and NDCG@nNDCG@n.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,