Article ID Journal Published Year Pages File Type
386088 Expert Systems with Applications 2010 12 Pages PDF
Abstract

In this paper, various novel heuristic stochastic search techniques have been proposed for optimization of proportional–integral-derivative gains used in Sugeno fuzzy logic based automatic generation control of multi-area thermal generating plants. The techniques are genetic algorithm, various types of particle swarm optimization and bacteria foraging optimization. Numerical results show that all optimization techniques are more or less equally very effective in yielding optimal transient responses of area frequency and tie-line power flow deviations, but still MCASO and BFO yield much more global true optimal results. Particle swarm optimizations take the least time to achieve the same optimal gains. These gains are for nominal system parameters. For varying off-nominal on-line system parameters, fast acting Sugeno fuzzy logic manipulates the nominal gains adaptively to determine transient responses.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,