Article ID Journal Published Year Pages File Type
386725 Expert Systems with Applications 2010 10 Pages PDF
Abstract

The critical spare parts (CSP) are vital to machine operation, which also have the characteristic of more expensive, larger demand variation, longer purchasing lead time than non-critical spare parts. Therefore, it is an urgent issue to devise a way to forecast the future required amount of CSP accurately.This investigation proposed moving back-propagation neural network (MBPN) and moving fuzzy neuron network (MFNN) to effectively predict the CSP requirement so as to provide as a reference of spare parts control. This investigation also compare prediction accuracy with other forecasting methods, such like grey prediction method, back-propagation neural network (BPN), fuzzy neuron network (FNN), etc. All of the prediction methods evaluated the real data, which are provided by famous wafer testing factories in Taiwan, the effectiveness of the proposed methods is demonstrated through a real case study.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,