Article ID Journal Published Year Pages File Type
386978 Expert Systems with Applications 2009 12 Pages PDF
Abstract

In this paper, bacteria foraging optimization (BFO) – a bio-inspired technique, is utilized to tune the parameters of both single-input and dual-input power system stabilizers (PSSs). Conventional PSS (CPSS) and the three dual-input IEEE PSSs (PSS2B, PSS3B, and PSS4B) are optimally tuned to obtain the optimal transient performances. A comparative performance study of these four variants of PSSs is also made. It is revealed that the transient performance of dual-input PSS is better than single-input PSS. It is, further, explored that among dual-input PSSs, PSS3B offers superior transient performance. A comparison between the results of the BFO and that of genetic algorithm (GA) is conducted in this study. The comparison reveals that BFO is more effective than GA in finding the optimal transient performance. For on-line, off-nominal operating conditions Sugeno fuzzy logic (SFL) based approach is adopted. On real time measurements of system operating conditions, SFL adaptively and very fast yields on-line, off-nominal optimal stabilizer parameters.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,