Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
387338 | Expert Systems with Applications | 2010 | 6 Pages |
The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise itself easily through obfuscation or transformation, which makes the detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflaged malicious HTML codes. Therefore, our paper proposes a malicious web page detection using the technique of machine learning. Our study analyzes the characteristic of a malicious webpage systematically and presents important features for machine learning. Experimental results demonstrate that our method is resilient to code obfuscations and can correctly determine whether a webpage is malicious or not.