Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
387353 | Expert Systems with Applications | 2010 | 8 Pages |
Abstract
This paper presents a new load forecasting model based on hybrid particle swarm optimization with Gaussian and adaptive mutation (HAGPSO) and wavelet v-support vector machine (Wv-SVM). Firstly, it is proved that mother wavelet function can build a set of complete base through horizontal floating and form the wavelet kernel function. And then, Wv-SVM with wavelet kernel function is proposed in this paper. Secondly, aiming to the disadvantage of standard PSO, HAGPSO is proposed to seek the optimal parameter of Wv-SVM. Finally, the load forecasting model based on HAGPSO and Wv-SVM is proposed in this paper. The results of application in load forecasts show the proposed model is effective and feasible.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Qi Wu,