| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 387437 | Expert Systems with Applications | 2009 | 7 Pages |
This paper presents a hybrid approach of case-based reasoning and rule-based reasoning, as an alternative to the purely rule-based method, to build a clinical decision support system for ICU. This enables the system to tackle problems like high complexity, low experienced new staff and changing medical conditions. The purely rule-based method has its limitations since it requires explicit knowledge of the details of each domain of ICU, such as cardiac domain hence takes years to build knowledge base. Case-based reasoning uses knowledge in the form of specific cases to solve a new problem, and the solution is based on the similarities between the new problem and the available cases. This paper presents a case-based reasoning and rule-based reasoning based model which can provide clinical decision support for all domains of ICU unlike rule-based inference models which are highly domain knowledge specific. Experiments with real ICU data as well as simulated data clearly demonstrate the efficacy of the proposed method.
