Article ID Journal Published Year Pages File Type
387596 Expert Systems with Applications 2009 9 Pages PDF
Abstract

Support vector machines (SVMs) are the effective machine-learning methods based on the structural risk minimization (SRM) principle, which is an approach to minimize the upper bound risk functional related to the generalization performance. The parameter selection is an important factor that impacts the performance of SVMs. Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) is an evolutionary optimization strategy, which is used to optimize the parameters of SVMs in this paper. Compared with the traditional SVMs, the optimal SVMs using CMA-ES have more accuracy in predicting the Lorenz signal. The industry case illustrates that the proposed method is very successfully in forecasting the short-term fault of large machinery.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,