Article ID Journal Published Year Pages File Type
387900 Expert Systems with Applications 2009 12 Pages PDF
Abstract

This study uses machine learning techniques (ML) to classify and cluster different Western music genres. Three artificial neural network models (multi-layer perceptron neural network [MLP], probabilistic neural network [PNN]) and self-organizing maps neural network (SOM) along with support vector machines (SVM) are compared to two standard statistical methods (linear discriminant analysis [LDA] and cluster analysis [CA]). The variable sets considered are average frequencies, variance frequencies, maximum frequencies, amplitude or loudness of the sound and the median of the location of the 15 highest peaks in the periodogram. The results show that machine learning models outperform traditional statistical techniques in classifying and clustering different music genres due to their robustness and flexibility of modeling algorithms. The study also shows how it is possible to identify various dimensions of music genres by uncovering complex patterns in the multidimensional data.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,