Article ID Journal Published Year Pages File Type
388033 Expert Systems with Applications 2009 8 Pages PDF
Abstract

Financial decisions are often based on classification models which are used to assign a set of observations into predefined groups. Such models ought to be as accurate as possible. One important step towards the development of accurate financial classification models involves the selection of the appropriate independent variables (features) which are relevant for the problem at hand. This is known as the feature selection problem in the machine learning/data mining field. In financial decisions, feature selection is often based on the subjective judgment of the experts. Nevertheless, automated feature selection algorithms could be of great help to the decision-makers providing the means to explore efficiently the solution space. This study uses two nature-inspired methods, namely ant colony optimization and particle swarm optimization, for this problem. The modelling context is developed and the performance of the methods is tested in two financial classification tasks, involving credit risk assessment and audit qualifications.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,