Article ID Journal Published Year Pages File Type
388051 Expert Systems with Applications 2009 5 Pages PDF
Abstract

Accurate estimation of software project effort is crucial for successful management and control of a software project. Recently, multiple additive regression trees (MART) has been proposed as a novel advance in data mining that extends and improves the classification and regression trees (CART) model using stochastic gradient boosting. This paper empirically evaluates the potential of MART as a novel software effort estimation model when compared with recently published models, in terms of accuracy. The comparison is based on a well-known and respected NASA software project dataset. The results indicate that improved estimation accuracy of software project effort has been achieved using MART when compared with linear regression, radial basis function neural networks, and support vector regression models.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,