Article ID Journal Published Year Pages File Type
388052 Expert Systems with Applications 2009 10 Pages PDF
Abstract

Mining closed frequent itemsets from data streams is of interest recently. However, it is not easy for users to determine a proper minimum support threshold. Hence, it is more reasonable to ask users to set a bound on the result size. Therefore, an interactive single-pass algorithm, called TKC-DS (top-K frequent closed itemsets of data streams), is proposed for mining top-K closed itemsets from data streams efficiently. A novel data structure, called CIL (closed itemset lattice), is developed for maintaining the essential information of closed itemsets generated so far. Experimental results show that the proposed TKC-DS algorithm is an efficient method for mining top-K frequent itemsets from data streams.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,