Article ID Journal Published Year Pages File Type
388342 Expert Systems with Applications 2012 13 Pages PDF
Abstract

This paper presents a fuzzy-Pareto dominance driven possibilistic model based planning of electrical distribution systems using multi-objective particle swarm optimization (MOPSO). This multi-objective planning model captures the possibilistic variations of the system loads using a fuzzy triangular number. The MOPSO based on the Pareto-optimality principle is used to obtain a set of non-dominated solutions representing different network structures under uncertainties in load demands and these non-dominated solutions are stored in an elite archive of limited size. Normally, choosing the candidate non-dominated solutions to be retained in the elite archive while maintaining the quality of the Pareto-approximation front as well as maintaining the diversity of solutions on this front is very much computationally demanding. In this paper, the principles of fuzzy Pareto-dominance are used to find out and rank the non-dominated solutions on the Pareto-approximation front. This ranking in turn is used to maintain the elite archive of limited size by discarding the lower ranked solutions. The two planning objectives are: (i) minimization of total installation and operational cost and (ii) minimization of risk factor. The risk factor is defined as a function of an index called contingency-load-loss index (CLLI), which captures the effect of load loss under contingencies, and the degree of network constraint violations. The minimization of the CLLI improves network reliability. The network variables that are optimized are: (i) number of feeders and their routes, and (ii) number and locations of sectionalizing switches. An MOPSO (developed by the authors), based on a novel technique for the selection and assignment of leaders/guides for efficient search of non-dominated solutions, is used as the optimization tool. The proposed planning approach is validated on a typical 100-node distribution system. Performance comparisons between the planning approaches with the possibilistic and deterministic load models are provided highlighting the relative merits and demerits. It is also verified that the proposed solution ranking scheme based on the fuzzy-Pareto dominance is very much better from both quality and computational burden point of view in comparison with the other well-known archive truncation techniques based on clustering and solution density measurement etc.

► Multi-objective planning approach for electrical distribution system with possibilistic load model is reported. ► Multi-objective particle swarm optimization (MOPSO) is used as the solution strategy. ► The concept of fuzzy-pareto-dominance is used to rank the non-dominated solutions. ► The fuzzy-pareto-dominance based approach is found to be an efficient archiving technique. ► The solution networks obtained with this approach are found to much more capable of sustaining different loading conditions.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,