Article ID Journal Published Year Pages File Type
388351 Expert Systems with Applications 2007 12 Pages PDF
Abstract

The early detection of potential churners enables companies to target these customers using specific retention actions, and subsequently increase profits. This analytical CRM (Customer Relationship Management) approach is illustrated using real-life data of a European pay-TV company. Their very high churn rate has had a devastating effect on their customer base. This paper first develops different churn-prediction models: the introduction of Markov chains in churn prediction, and a random forest model are benchmarked to a basic logistic model.The most appropriate model is subsequently used to target those customers with a high churn probability in a field experiment. Three alternative courses of marketing action are applied: giving free incentives, organizing special customer events, obtaining feedback on customer satisfaction through questionnaires. The results of this field experiment show that profits can be doubled using our churn-prediction model. Moreover, profits vary enormously with respect to the selected retention action, indicating that a customer satisfaction questionnaire yields the best results, a phenomenon known in the psychological literature as the ‘mere-measurement effect’.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,