Article ID Journal Published Year Pages File Type
388493 Expert Systems with Applications 2011 6 Pages PDF
Abstract

This paper presents a novel improved fuzzy particle swarm optimization (IFPSO) algorithm to the intelligent identification and control of a dynamic system. The proposed algorithm estimates optimally the parameters of system and controller by minimizing the mean of squared errors. The particle swarm optimization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the global and local exploitation abilities. In the proposed IFPSO, every particle dynamically adjusts inertia weight according to particles best memories using a nonlinear fuzzy model. As a result, the IFPSO algorithm has a faster convergence speed and a higher accuracy. The performance of IFPSO algorithm is compared with advanced algorithms such as Real-Coded Genetic Algorithm (RCGA), Linearly Decreasing Inertia Weight PSO (LDWPSO) and Fuzzy PSO (FPSO) in terms of parameter accuracy and convergence speed. Simulation results demonstrate the effectiveness of the proposed algorithm.

Research highlightsâ–ş In this paper, a novel Improved Fuzzy Particle Swarm Optimization (IFPSO) is proposed to increase the convergence speed and accuracy to save tremendous computation time. The proposed algorithm estimates optimally the parameters of system and controller by minimizing the mean of squared errors. The particle swarm optimization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the global and local exploitation abilities. In the proposed IFPSO, every particle dynamically adjusts inertia weight according to particles best memories using a nonlinear fuzzy model. Simulation results demonstrate the effectiveness of the proposed algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,