Article ID Journal Published Year Pages File Type
388607 Expert Systems with Applications 2007 10 Pages PDF
Abstract

Recently, principal components analysis (PCA) and independent components analysis (ICA) was introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively. In this paper, the feasibility of using nonlinear feature extraction is studied and it is applied in support vector machines (SVMs) to classify the faults of induction motor. In nonlinear feature extraction, we employed the PCA and ICA procedure and adopted the kernel trick to nonlinearly map the data into a feature space. A strategy of multi-class SVM-based classification is applied to perform the faults diagnosis. The performance of classification process due to various feature extraction method and the choice of kernel function is presented and compared to show the excellent of classification process.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,