Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
388671 | Expert Systems with Applications | 2010 | 5 Pages |
Abstract
Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Aboozar Khajeh, Hamid Modarress,