Article ID Journal Published Year Pages File Type
388671 Expert Systems with Applications 2010 5 Pages PDF
Abstract

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,