Article ID Journal Published Year Pages File Type
388820 Expert Systems with Applications 2009 6 Pages PDF
Abstract

In this study, an efficient sleep spindle detection algorithm based on decision tree is proposed. After analyzing the EEG waveform, the decision algorithm determines the exact location of sleep spindle by evaluating the outputs of three different methods namely: Short Time Fourier Transform (STFT), Multiple Signal Classification (MUSIC) algorithm and Teager Energy Operator (TEO).The EEG records collected from patients used in this study have been recorded at the Sleep Research Center in Department of Psychiatry of Gülhane Military Medicine Academy. The obtained results are in agreement with the visual analysis of EEG evaluated by expert physicians. The method is applied to 16 distinct patients, 420,570 minutes long EEG records and the performance of the algorithm was assessed for the sleep spindles detection with 96.17% sensitivity and 95.54% specificity. As a result, it is found that the proposed sleep spindle detection algorithm is an efficient method to detect sleep spindles on EEG records.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,