Article ID Journal Published Year Pages File Type
388945 Expert Systems with Applications 2008 9 Pages PDF
Abstract

In this study, performances of classification techniques were compared in order to predict the presence of coronary artery disease (CAD). A retrospective analysis was performed in 1245 subjects (865 presence of CAD and 380 absence of CAD). We compared performances of logistic regression (LR), classification and regression tree (CART), multi-layer perceptron (MLP), radial basis function (RBF), and self-organizing feature maps (SOFM). Predictor variables were age, sex, family history of CAD, smoking status, diabetes mellitus, systemic hypertension, hypercholesterolemia, and body mass index (BMI). Performances of classification techniques were compared using ROC curve, Hierarchical Cluster Analysis (HCA), and Multidimensional Scaling (MDS). Areas under the ROC curves are 0.783, 0.753, 0.745, 0.721, and 0.675, respectively for MLP, LR, CART, RBF, and SOFM. MLP was found the best technique to predict presence of CAD in this data set, given its good classificatory performance. MLP, CART, LR, and RBF performed better than SOFM in predicting CAD in according to HCA and MDS.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,