Article ID Journal Published Year Pages File Type
389985 Fuzzy Sets and Systems 2013 19 Pages PDF
Abstract

In this paper, we present a new fuzzy clustering algorithm for categorical data. In the algorithm, the objective function of the fuzzy k-modes algorithm is modified by adding the between-cluster information so that we can simultaneously minimize the within-cluster dispersion and enhance the between-cluster separation. For obtaining the local optimal solutions of the modified objective function, the corresponding update formulas of the membership matrix and the cluster prototypes are strictly derived. The convergence of the proposed algorithm under the optimization framework is proved. On several real data sets from UCI, the performance of the proposed algorithm is studied. The experimental results illustrate that the algorithm is effective and suitable for categorical data sets.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence