Article ID Journal Published Year Pages File Type
390643 Fuzzy Sets and Systems 2009 12 Pages PDF
Abstract

In this paper we introduce a slight modification of the definition of migrativity for aggregation functions that allows useful characterization of this property. Among other things, in this context we prove that there are no t-conorms, uninorms or nullnorms that satisfy migrativity (with the product being the only migrative t-norm, as already shown by other authors) and that the only migrative idempotent aggregation function is the geometric mean. The k-Lipschitz migrative aggregation functions are also characterized and the product is shown to be the only 1-Lipschitz migrative aggregation function. Similarly, it is the only associative migrative aggregation function possessing a neutral element. Finally, the associativity and bisymmetry of migrative aggregation functions are discussed.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence