Article ID Journal Published Year Pages File Type
390684 Fuzzy Sets and Systems 2010 13 Pages PDF
Abstract

Fuzzy matrices have been proposed to represent fuzzy relations on finite universes. Since Thomason's paper in 1977 showing that the max–min powers of a fuzzy matrix either converge or oscillate with a finite period, conditions for limiting behavior of powers of a fuzzy matrix have been studied. It turns out that the limiting behavior depends on the algebraic operations employed, which usually in the literature include max–min/max-product/max-Archimedean t-norm/max-t-norm/max-arithmetic mean operations, respectively. In this paper, we consider the max-generalized mean powers of a fuzzy matrix which is an extension of the max-arithmetic mean operation. We show that the powers of such fuzzy matrices are always convergent. As an application, we consider fuzzy Markov chains with the max-generalized mean operations for the fuzzy transition matrix. Our results imply that these fuzzy Markov chains are always ergodic and robust with respect to small perturbations of the transition matrices.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence