Article ID Journal Published Year Pages File Type
391523 Information Sciences 2015 9 Pages PDF
Abstract

This study proposes a solution to the problem of designing adaptive global sliding mode controllers for a class of linear helicopter systems with actuator faults and time delay. An adaptive global sliding mode control approach is proposed based on dynamic nonlinear sliding mode function and adaptive law. The advantages of the controller include elimination of the reaching movement of traditional sliding mode control, realization of online identification of the fault value, and overcoming of the effect of the actuator faults and time delay. In addition, quantum information technique is used to increase the control accuracy of helicopter. Simulation results demonstrate the efficiency and superiority of the proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,