Article ID Journal Published Year Pages File Type
391716 Information Sciences 2014 17 Pages PDF
Abstract

This paper is concerned with modelling and controller design for a discrete-time networked control system with limited channels and data drift. For the networked control system, available communication channels are usually limited. Moreover, the data received by the actuator may be different from the data sent by the controller and this phenomenon is referred to as data drift. By taking limited channels and data drift into account, a new model for the networked control system is established. Then a new Lyapunov functional is constructed to drive some stability criteria. Based on these stability criteria, a channel utilization-based switched controller is designed to asymptotically stabilize the networked system in the sense of mean-square. The proposed design method can enhance robustness of the networked control system to data drift and external disturbances. A numerical example is given to illustrate the effectiveness of the proposed controller design.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,