Article ID Journal Published Year Pages File Type
392684 Information Sciences 2014 15 Pages PDF
Abstract

Many authors agree that, when applying instance selection to a data set, it would be useful to characterize the data set in order to choose the most suitable selection criterion. Based on this hypothesis, we propose an architecture for knowledge-based instance selection (KBIS) systems. It uses meta-learning to select the best suited instance selection method for each specific database, among several methods available. We carried out a study in order to verify whether this architecture can outperform the individual methods. Two different versions of a KBIS system based on our architecture, each using a different learner, were instantiated. They were evaluated experimentally and the results were compared to those of the individual methods used.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,