Article ID Journal Published Year Pages File Type
393764 Information Sciences 2011 14 Pages PDF
Abstract

Energy consumption is a key parameter when highly computational tasks should be performed in a multiprocessor system. In this case, in order to reduce total energy consumption, task scheduling and low-power methodology should be combined in an efficient way. This paper proposes an algorithm for off-line communication-aware task scheduling and voltage selection using Ant Colony Optimization. The proposed algorithm minimizes total energy consumption of an application executing on a homogeneous multiprocessor system. The artificial agents explore the search space based on stochastic decision-making using global heuristic information with total energy consumption and local heuristic information with interprocessor communication volume. In search space exploration, both voltage selection and the dependencies between tasks are considered. The pheromone trails are updated by normalizing the total energy consumption. The pheromone trails represent the global heuristic information in order to utilize all entire energy consumption information from previous evaluated solutions. Experimental results show that the proposed algorithm outperforms traditional communication-aware task scheduling and task scheduling using genetic algorithms in terms of total energy consumption.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,