Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
393828 | Information Sciences | 2011 | 22 Pages |
Dynamic multi-objective optimization is a current hot topic. This paper discusses several issues that has not been reported in the static multi-objective optimization literature such as the loss of non-dominated solutions, the emergence of the false non-dominated solutions and the necessity for an online decision-making mechanism. Then, a dynamic multi-objective optimization algorithm is developed, which is inspired by membrane computing. A novel membrane control strategy is proposed in this article and is applied to the optimal control of a time-varying unstable plant. Experimental results clearly illustrate that the control strategy based on the dynamic multi-objective optimization algorithm is highly effective with a short rise time and a small overshoot.