Article ID Journal Published Year Pages File Type
393918 Information Sciences 2011 11 Pages PDF
Abstract

The nearest neighbor classification method assigns an unclassified point to the class of the nearest case of a set of previously classified points. This rule is independent of the underlying joint distribution of the sample points and their classifications. An extension to this approach is the k-NN method, in which the classification of the unclassified point is made by following a voting criteria within the k nearest points.The method we present here extends the k-NN idea, searching in each class for the k nearest points to the unclassified point, and classifying it in the class which minimizes the mean distance between the unclassified point and the k nearest points within each class. As all classes can take part in the final selection process, we have called the new approach k Nearest Neighbor Equality (k-NNE).Experimental results we obtained empirically show the suitability of the k-NNE algorithm, and its effectiveness suggests that it could be added to the current list of distance based classifiers.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,