Article ID Journal Published Year Pages File Type
394011 Information Sciences 2010 14 Pages PDF
Abstract

It is well-known that the representation of several classes of residuated lattices involves lattice-ordered groups. An often applicable method to determine the representing group (or groups) from a residuated lattice is based on partial algebras: the monoidal operation is restricted to those pairs that fulfil a certain extremality condition, and else left undefined. The subsequent construction applied to the partial algebra is easy, transparent, and leads directly to the structure needed for representation.In this paper, we consider subreducts of residuated lattices, the monoidal and the meet operation being dropped: the resulting algebras are pseudo-BCK semilattices. Assuming divisibility, we can pass on to partial algebras also in this case. To reconstruct the underlying group structure from this partial algebra, if applicable, is again straightforward. We demonstrate the elegance of this method for two classes of pseudo-BCK semilattices: semilinear divisible pseudo-BCK algebras and cone algebras.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,