Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
394217 | Information Sciences | 2011 | 10 Pages |
Abstract
Nearest neighbor (NN) classifier with dynamic time warping (DTW) is considered to be an effective method for time series classification. The performance of NN-DTW is dependent on the DTW constraints because the NN classifier is sensitive to the used distance function. For time series classification, the global path constraint of DTW is learned for optimization of the alignment of time series by maximizing the nearest neighbor hypothesis margin. In addition, a reduction technique is combined with a search process to condense the prototypes. The approach is implemented and tested on UCR datasets. Experimental results show the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Daren Yu, Xiao Yu, Qinghua Hu, Jinfu Liu, Anqi Wu,