Article ID Journal Published Year Pages File Type
394448 Information Sciences 2010 15 Pages PDF
Abstract

In recent years, evolutionary algorithms (EAs) have been extensively developed and utilized to solve multi-objective optimization problems. However, some previous studies have shown that for certain problems, an approach which allows for non-greedy or uphill moves (unlike EAs), can be more beneficial. One such approach is simulated annealing (SA). SA is a proven heuristic for solving numerical optimization problems. But owing to its point-to-point nature of search, limited efforts has been made to explore its potential for solving multi-objective problems. The focus of the presented work is to develop a simulated annealing algorithm for constrained multi-objective problems. The performance of the proposed algorithm is reported on a number of difficult constrained benchmark problems. A comparison with other established multi-objective optimization algorithms, such as infeasibility driven evolutionary algorithm (IDEA), Non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective Scatter search II (MOSS-II) has been included to highlight the benefits of the proposed approach.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,