| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 395084 | Information Sciences | 2008 | 21 Pages |
One of the tasks of decision-making support systems is to develop methods that help the designer select a solution among a set of actions, e.g. by constructing a function expressing his/her preferences over a set of potential solutions. In this paper, a new method to solve multiobjective optimization (MOO) problems is developed in which the user’s information about his/her preferences is taken into account within the search process. Preference functions are built that reflect the decision-maker’s (DM) interests and use meaningful parameters for each objective. The preference functions convert these objective preferences into numbers. Next, a single objective is automatically built and no weight selection is performed. Problems found due to the multimodality nature of a generated single cost index are managed with Genetic Algorithms (GAs). Three examples are given to illustrate the effectiveness of the method.
