Article ID Journal Published Year Pages File Type
395154 Information Sciences 2010 15 Pages PDF
Abstract

Oil spills represent one of the most destructive environmental disasters. Predicting the possibility of finding oil slicks in a certain area after an oil spill can be critical in reducing environmental risks. The system presented here uses the Case-Based Reasoning (CBR) methodology to forecast the presence or absence of oil slicks in certain open sea areas after an oil spill. CBR is a computational methodology designed to generate solutions to certain problems by analysing previous solutions given to previously solved problems. The proposed CBR system includes a novel network for data classification and retrieval. This type of network, which is constructed by using an algorithm to summarize the results of an ensemble of Self-Organizing Maps, is explained and analysed in the present study. The Weighted Voting Superposition (WeVoS) algorithm mainly aims to achieve the best topographically ordered representation of a dataset in the map. This study shows how the proposed system, called WeVoS-CBR, uses information such as salinity, temperature, pressure, number and area of the slicks, obtained from various satellites to accurately predict the presence of oil slicks in the north-west of the Galician coast, using historical data.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,