Article ID Journal Published Year Pages File Type
395181 Information Sciences 2012 18 Pages PDF
Abstract

We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,