Article ID Journal Published Year Pages File Type
395309 Information Sciences 2009 16 Pages PDF
Abstract

In this study, a fuzzy-stochastic-based violation analysis (FSVA) approach is developed for the planning of water resources management systems with uncertain information, based on a multistage fuzzy-stochastic integer programming (FSIP) model. In FSVA, a number of violation variables for the objective and constraints are allowed, such that in-depth analyses of tradeoffs among economic objective, satisfaction degree, and constraint-violation risk can be facilitated. Besides, the developed method can deal with uncertainties expressed as probability distributions and fuzzy sets; it can also reflect the dynamics in terms of decisions for water-allocation and surplus-flow diversion, through transactions at discrete points of a complete scenario set over a multistage context. The developed FSVA method is applied to a case study of water resources management within a multi-stream, multi-reservoir and multi-period context. The results indicate that the satisfaction degrees and system benefits would be different under varied violation levels; moreover, different violation levels can also lead to changed water-allocation and surplus-flow diversion plans. Violation analyses are also conducted to demonstrate that violating different constraints have different effects on system benefit and satisfaction degree.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,