Article ID Journal Published Year Pages File Type
395329 Information Sciences 2012 23 Pages PDF
Abstract

Currently, an alternative framework using the hypervolume indicator to guide the search for elite solutions of a multi-objective problem is studied in the evolutionary multi-objective optimization community very actively, comparing to the traditional Pareto dominance based approach. In this paper, we present a dynamic neighborhood multi-objective evolutionary algorithm based on hypervolume indicator (DNMOEA/HI), which benefits from both Pareto dominance and hypervolume indicator based frameworks. DNMOEA/HI is featured by the employment of hypervolume indicator as a truncation operator to prune the exceeded population, while a well-designed density estimator (i.e., tree neighborhood density) is combined with the Pareto strength value to perform fitness assignment. Moreover, a novel algorithm is proposed to directly evaluate the hypervolume contribution of a single individual. The performance of DNMOEA/HI is verified on a comprehensive benchmark suite, in comparison with six other multi-objective evolutionary algorithms. Experimental results demonstrate the efficiency of our proposed algorithm. Solutions obtained by DNMOEA/HI well approach the Pareto optimal front and are evenly distributed over the front, simultaneously.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , ,