Article ID Journal Published Year Pages File Type
395354 Information Sciences 2007 16 Pages PDF
Abstract

Privacy preserving data mining addresses the need of multiple parties with private inputs to run a data mining algorithm and learn the results over the combined data without revealing any unnecessary information. Most of the existing cryptographic solutions to privacy-preserving data mining assume semi-honest participants. In theory, these solutions can be extended to the malicious model using standard techniques like commitment schemes and zero-knowledge proofs. However, these techniques are often expensive, especially when the data sizes are large. In this paper, we investigate alternative ways to convert solutions in the semi-honest model to the malicious model. We take two classical solutions as examples, one of which can be extended to the malicious model with only slight modifications while another requires a careful redesign of the protocol. In both cases, our solutions for the malicious model are much more efficient than the zero-knowledge proofs based solutions.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,