Article ID Journal Published Year Pages File Type
395454 Information Sciences 2008 15 Pages PDF
Abstract

Collaborative filtering is one of the most successful and widely used methods of automated product recommendation in online stores. The most critical component of the method is the mechanism of finding similarities among users using product ratings data so that products can be recommended based on the similarities. The calculation of similarities has relied on traditional distance and vector similarity measures such as Pearson’s correlation and cosine which, however, have been seldom questioned in terms of their effectiveness in the recommendation problem domain. This paper presents a new heuristic similarity measure that focuses on improving recommendation performance under cold-start conditions where only a small number of ratings are available for similarity calculation for each user. Experiments using three different datasets show the superiority of the measure in new user cold-start conditions.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,