Article ID Journal Published Year Pages File Type
396400 Information Sciences 2006 20 Pages PDF
Abstract

Bayesian inference provides a formal framework for assessing the odds of hypotheses in light of evidence. This makes Bayesian inference applicable to a wide range of diagnostic challenges in the field of chance discovery, including the problem of disputed authorship that arises in electronic commerce, counter-terrorism and other forensic applications. For example, when two documents are so similar that one is likely to be a hoax written from the other, the question is: Which document is most likely the source and which document is most likely the hoax? Here I review a Bayesian study of disputed authorship performed by a biblical scholar, and I show that the scholar makes critical errors with respect to several issues, namely: Causal Basis, Likelihood Judgment and Conditional Dependency. The scholar’s errors are important because they have a large effect on his conclusions and because similar errors often occur when people, both experts and novices, are faced with the challenges of Bayesian inference. As a practical solution, I introduce a graphical system designed to help prevent the observed errors. I discuss how this decision support system applies more generally to any problem of Bayesian inference, and how it differs from the graphical models of Bayesian Networks.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,