Article ID Journal Published Year Pages File Type
396413 Information Sciences 2006 13 Pages PDF
Abstract

The hypercube is one of the most versatile and efficient interconnection networks (networks for short) so far discovered for parallel computation. Let f denote the number of faulty vertices in an n-cube. This study demonstrates that when f ⩽ n − 2, the n-cube contains a fault-free path with length at least 2n − 2f − 1 (or 2n − 2f − 2) between two arbitrary vertices of odd (or even) distance. Since an n-cube is a bipartite graph with two partite sets of equal size, the path is longest in the worst-case. Furthermore, since the connectivity of an n-cube is n, the n-cube cannot tolerate n − 1 faulty vertices. Hence, our result is optimal.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,