Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
396413 | Information Sciences | 2006 | 13 Pages |
Abstract
The hypercube is one of the most versatile and efficient interconnection networks (networks for short) so far discovered for parallel computation. Let f denote the number of faulty vertices in an n-cube. This study demonstrates that when f ⩽ n − 2, the n-cube contains a fault-free path with length at least 2n − 2f − 1 (or 2n − 2f − 2) between two arbitrary vertices of odd (or even) distance. Since an n-cube is a bipartite graph with two partite sets of equal size, the path is longest in the worst-case. Furthermore, since the connectivity of an n-cube is n, the n-cube cannot tolerate n − 1 faulty vertices. Hence, our result is optimal.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Jung-Sheng Fu,