Article ID Journal Published Year Pages File Type
396803 Information Systems 2015 9 Pages PDF
Abstract

A novel transfer learning method is proposed in this paper to solve the power load forecast problems in the smart grid. Prediction errors of the target tasks can be greatly reduced by utilizing the knowledge transferred from the source tasks. In this work, a source task selection algorithm is developed and the transfer learning model based on Gaussian process is constructed. Negative knowledge transfers are avoided compared with the previous works, and therefore the prediction accuracies are greatly improved. In addition, a fast inference algorithm is developed to accelerate the prediction steps. The results of the experiments with real world data are illustrated.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,