Article ID Journal Published Year Pages File Type
397133 International Journal of Approximate Reasoning 2010 13 Pages PDF
Abstract

The logical and algorithmic properties of stable conditional independence (CI) as an alternative structural representation of conditional independence information are investigated. We utilize recent results concerning a complete axiomatization of stable conditional independence relative to discrete probability measures to derive perfect model properties of stable conditional independence structures. We show that stable CI can be interpreted as a generalization of Markov networks and establish a connection between sets of stable CI statements and propositional formulas in conjunctive normal form. Consequently, we derive that the implication problem for stable CI is coNP-complete. Finally, we show that Boolean satisfiability (SAT) solvers can be employed to efficiently decide the implication problem and to compute concise, non-redundant representations of stable CI, even for instances involving hundreds of random variables.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence