Article ID Journal Published Year Pages File Type
397181 International Journal of Approximate Reasoning 2008 15 Pages PDF
Abstract

We develop a method for clustering all types of belief functions, in particular non-consonant belief functions. Such clustering is done when the belief functions concern multiple events, and all belief functions are mixed up. Clustering is performed by decomposing all belief functions into simple support and inverse simple support functions that are clustered based on their pairwise generalized weights of conflict, constrained by weights of attraction assigned to keep track of all decompositions. The generalized conflict c∈(-∞,∞) and generalized weight of conflict J-∈(-∞,∞) are derived in the combination of simple support and inverse simple support functions.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence