Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
397514 | International Journal of Approximate Reasoning | 2009 | 11 Pages |
The concept of approximation spaces is a key notion of rough set theory, which is an important tool for approximate reasoning about data. This paper concerns algebraic aspects of generalized approximation spaces. Concepts of R-open sets, R-closed sets and regular sets of a generalized approximation space (U,R) are introduced. Algebraic structures of various families of subsets of (U,R) under the set-inclusion order are investigated. Main results are: (1) The family of all R-open sets (respectively, R-closed sets, R-clopen sets) is both a completely distributive lattice and an algebraic lattice, and in addition a complete Boolean algebra if relation R is symmetric. (2) The family of definable sets is both an algebraic completely distributive lattice and a complete Boolean algebra if relation R is serial. (3) The collection of upper (respectively, lower) approximation sets is a completely distributive lattice if and only if the involved relation is regular. (4) The family of regular sets is a complete Boolean algebra if the involved relation is serial and transitive.