Article ID Journal Published Year Pages File Type
397528 International Journal of Approximate Reasoning 2009 11 Pages PDF
Abstract

A clustering method to group independent fuzzy random variables observed on a sample by focusing on their expected values is developed. The procedure is iterative and based on the p-value of a multi-sample bootstrap test. Thus, it simultaneously takes into account fuzziness and stochastic variability. Moreover, an objective stopping criterion leading to statistically equal groups different from each other is provided. Some simulations to show the performance of this inferential approach are included. The results are illustrated by means of a case study.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence