Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
397539 | Information Systems | 2009 | 17 Pages |
As data of an unprecedented scale are becoming accessible, it becomes more and more important to help each user identify the ideal results of a manageable size. As such a mechanism, skyline queries have recently attracted a lot of attention for its intuitive query formulation. This intuitiveness, however, has a side effect of retrieving too many results, especially for high-dimensional data. This paper is to support personalized skyline queries as identifying “truly interesting” objects based on user-specific preference and retrieval size k. In particular, we abstract personalized skyline ranking as a dynamic search over skyline subspaces guided by user-specific preference. We then develop a novel algorithm navigating on a compressed structure itself, to reduce the storage overhead. Furthermore, we also develop novel techniques to interleave cube construction with navigation for some scenarios without a priori structure. Finally, we extend the proposed techniques for user-specific preferences including equivalence preference. Our extensive evaluation results validate the effectiveness and efficiency of the proposed algorithms on both real-life and synthetic data.