Article ID Journal Published Year Pages File Type
397554 International Journal of Approximate Reasoning 2008 14 Pages PDF
Abstract

A novel rough set approach is proposed in this paper to discover classification rules through a process of knowledge induction which selects decision rules with a minimal set of features for classification of real-valued data. A rough set knowledge discovery framework is formulated for the analysis of interval-valued information systems converted from real-valued raw decision tables. The minimal feature selection method for information systems with interval-valued features obtains all classification rules hidden in a system through a knowledge induction process. Numerical examples are employed to substantiate the conceptual arguments.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence