Article ID Journal Published Year Pages File Type
397773 International Journal of Approximate Reasoning 2011 18 Pages PDF
Abstract

A model and method are proposed for dealing with noisy and dependent features in classification problems. The knowledge base consists of uncertain logical rules forming a probabilistic argumentation system. Assumption-based reasoning is the inference mechanism that is used to derive information about the correct class of the object. Given a hypothesis regarding the correct class, the system provides a symbolic expression of the arguments for that hypothesis as a logical disjunctive normal form. These arguments turn into degrees of support for the hypothesis when numerical weights are assigned to them, thereby creating a support function on the set of possible classes. Since a support function is a belief function, the pignistic transformation is then applied to the support function and the object is placed into the class with maximal pignistic probability.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence