Article ID Journal Published Year Pages File Type
398326 International Journal of Electrical Power & Energy Systems 2014 11 Pages PDF
Abstract

•Impact of wind generator control strategies on flicker emission.•A control scheme to reduce flicker when delivering ancillary services.•Impact of reactive power capability of the DFIG on flicker emission and mitigation.•Limitations in flicker mitigation under various network and wind conditions.

Majority of the wind power resources are typically sited at remote locations in power networks and generated power is transmitted through rural transmission corridors to load centres. With increased penetration level of the wind generation there is an increased requirement to provide ancillary services from distributed wind power resources, hence they are operated under different control strategies to provide ancillary services to the network. The control strategies and capability characteristics will significant impact on voltage fluctuations in distribution networks. This paper presents a comparative analysis between different wind generator control strategies (i.e. power factor control strategy, voltage control strategy and reactive power dispatch strategy) on network voltage fluctuations during variable wind conditions while considering extended reactive power capability (i.e. with both generator and power electronic converter reactive power capabilities) for the doubly-fed induction generator (DFIG). Voltage fluctuations are analysed using real wind data measured at a DFIG based wind farm, and the wind farm model was verified against real measurements. Study has shown that voltage fluctuations are exacerbated when wind generator is at mode transition (i.e. from power optimisation mode to power limitation mode). A sensitivity analysis has shown that voltage fluctuations are exacerbated due to the limitations of the reactive power capability of the DFIG, and the operating point of the DFIG power curve irrespective of the control strategy implemented at the wind generator. Furthermore, a mitigation strategy was developed as an integrated control scheme to the main control scheme in order to reduce voltage fluctuations due to wind power variations. However, effectiveness of the mitigation strategy is greatly affected by the reactive power capability of the DFIG, in particular during high wind turbulences.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,